Managing Equipment Damage Caused by Corrosive Feedstocks Encountered with Biofuel Production

When we talk about renewable fuels to the general public, many might imagine cars running on gasoline made from wildflowers and meadow grass. Those who work in the industry recognize that the fats and oils used to make renewable diesel can just about be anything but that, and in fact many come from unromantic sources, such as meatpacking waste.

From a process viewpoint, waste sources can cause serious problems because those fats and oils can contain corrosive contaminants, far worse than anything routinely encountered in conventional refining operations. Advice on how renewable diesel and sustainable aviation fuel (SAF) producers can deal with these issues is the topic of my two-part article in Hydrocarbon Processing, Implement Innovative Corrosion Management Solutions for Biofuel Refining. Part 1 is in the September issue. Producers must understand that they will encounter these contaminants, and they will take a toll on equipment, but the effect can be managed.

Clean feedstocks from oil seeds are easy to work with but are taken from food supplies. Producers wanting to find the lowest cost alternatives and avoid contributing to global food insecurity will surely find themselves dealing with difficult animal fats and crop waste.

As with all waste products, there are challenges of consistent feedstock quality and reliable supply chains. Polyethylene packing impurities are typically found in animal fats, resulting in process challenges with catalyst deactivation, fouling concerns with heat exchangers, and flow constraints and catalyst bed pressure drops triggered by plugging. In general, these types of waste oils require heat-traced feed piping due to their lower cloud point.

Obviously, these are problems, but corrosiveness can be an even more serious issue.

While organic sulfur components in renewables are decreased compared to petroleum feedstocks, the increased influx of organic chlorides and nitrates creates challenges with process equipment and piping integrity downstream of hydrotreating units. In addition to these and other corrosion-accelerating substances, the presence of water facilitates corrosion mechanisms by providing an electrolytic pathway. Water solubilizes organic and inorganic acids, creating carbon dioxide via hydrodecarboxylation, which turns organic chlorides into hydrochloric acid and promotes microbiologically influenced corrosion.

The article goes into more detail as to where these tend to occur in the process, and what types of corrosion are the most common. Corrosion problems often stem from refineries repurposing old process equipment to this new use. The metallurgy used in that equipment was likely designed to handle conventional crude oil feedstocks, which are typically much less corrosive. The inevitable result will be that this equipment suffers metal loss. Operators must monitor the loss to avoid unexpected catastrophic failure of a pipe fitting or vessel wall. The answer is continuous monitoring of metal thickness at strategic points using ultrasonic sensors, such as Emerson’s RosemountTm Wireless Permasense WT210 Corrosion and Erosion Monitoring Sensors.

Permanently installed ultrasonic wireless wall thickness monitoring sensors address these and other issues, making them the best option for most high-temperature corrosion monitoring applications. These sensors can measure small changes in wall thickness and exhibit robustness to extreme plant conditions, while also having extended battery life to provide reliable operation over the entire cycle between turnarounds.

In Part 2, we’ll look at strategies for creating a comprehensive corrosion monitoring program. For more information, visit Emerson’s Corrosion & Erosion Monitoring pages at Emerson.com. You can also connect and interact with other engineers in the Oil & Gas Groups at the Emerson Exchange 365 community.

The post Managing Equipment Damage Caused by Corrosive Feedstocks Encountered with Biofuel Production appeared first on the Emerson Automation Experts blog.